
OpenACC Workers for AMD GCN

Julian Brown

March 2018

Outline

AMD GCN recap

OpenACC recap
Worker implementation:
— Pass overview

— Neutering

— Broadcasting

Worker reductions

Future plans

Workgroups & Wavefronts

A workgroup is equivalent to a CPU
— Small amount of local memory (LDS)

A wavefront is like a CPU thread:
— Distinct register set

— Distinct stack

— Asynchronous execution wrt. other wavefronts

Wavefronts can synchronise at barriers, workgroups cannot
(easily)

OpenACC Execution Model

Blocks of C/C++/Fortran code are offloaded to a GPU
Loops within those blocks can be distributed over “abstract”
parallelism levels:
— The coarsest-grain level is gangs

— Each gang is split into workers

— Each worker is split into vectors

At each point in an offloaded block, work may be distributed
over gangs, workers and/or vectors

If we are in worker single or vector single mode, it is
important that side effects happen only once

OpenACC on GCN

For OpenACC, the following hardware features are used for
parallelism:
— “Gangs” correspond to workgroups

— “Workers” correpond to wavefronts
— “Vectors” use SIMD instructions

– A vector lane is a work item

Prior to this work, we were restricted to one wavefront per
workgroup (a single worker)

Parts of code derived from NVPTX implementation (but
moved to the middle-end)

This work concerns OpenACC only: OpenMP uses a
different, more “CPU-like” scheme

Kernel Launch

All workgroups/wavefronts (“threads”) execute the same
code, and run until completion
HSA provides a “3-dimensional” model
— x ∗ y ∗ z work items (threads) are scheduled to run on the GPU
— HSA is a cross-platform API. For GCN:

– One of these dimensions maps to SIMD vectors

– One dimension maps to workgroups

– One dimension maps to wavefronts (i.e. workers)

No provision for dynamically changing the number of threads
— In particular, all workers run all kernel code

— But, there are several ways of working around this

Middle-End Representation

fork

join

At the gimple level, “fork” and
“join” primitives are used to
demark partitioned loops
For Nvidia PTX, these are
rewritten in the backend to use a
neutering/broadcast scheme
— “Simulating” fork/join

semantics

For AMD GCN, we do a similar
transformation much earlier in
compilation

Worker Transformations

Transformations done at gimple level consist of:
Neutering
— A control flow transformation

— Ensures that worker-single code executes on the
first wavefront only

Broadcasting
— A data flow transformation

— Ensures that local state changes on first
wavefront are propagated to other (idle)
wavefronts

— Works on predicates used for control flow
– Idle wavefronts “follow along” with the first

Pass Overview

1. Split basic blocks at fork/join boundaries

2. Par discovery: scan the function’s loop structure

3. Populate single-mode bitmaps: record which basic blocks
execute in worker-single or vector-single mode

4. Find SSA names which may need propagation (defined in
worker-single mode)

5. Find uses of VAR_DECLs in worker-partitioned mode
6. Calculate set of local vars that may need propagating after

each worker-single block:
6.1 Those that are assigned directly

6.2 Those that may be modified by a write through a pointer

7. Transform worker-single mode blocks using above data

Block Splitting

Split blocks that contain forks or joins
— Parallelism level changes on edges, not within blocks

Some stmts are put in singleton blocks in fully-partitioned
mode:
— Control flow (GIMPLE_RETURN, GIMPLE_COND,

GIMPLE_SWITCH, GIMPLE_CALL)

— Assignments with COMPONENT_REF, BIT_FIELD_REF,
ARRAY_REF lhs

Transforming Conditions

Condition splitting

// [...]
if (a > b) goto blk1; else goto blk2;

to...

// Worker zero executes this statement :
pred = (a > b);
// Block split , next stmt executed by
// all workers :
if (pred != 0) goto blk1; else goto blk2;

Transforming Function Calls

Two types of function calls to consider in worker-single mode:
— “Normal” calls – to maths library routines, etc.

— OpenACC routines

The former can be left as-is, and be called from worker zero
only
The latter may contain worker-partitioned loops, so call from
all workers (including “idle” ones)
— Worker-single code within the function undergoes the same

transformation

Neutering (1)

original bb

orig

if (worker 0)

send

if (worker 0)

receive

out

T F

T F

barrier

A single bb is transformed into a
graph of blocks:
— Predicate block inserted at top

— Original block executed for a
single worker only

— Thread-local state is broadcast
via LDS

— Other workers receive local state
changes after sync barrier

Neutering (2)

In pseudocode:
s t a t i c __lds oacc_ws_data_s_1 ob l k ;

i f ((i b l k = __bu i l t i n_oacc_s i ng l e_copy_s t a r t (&ob l k))
== NULL) {

// Do s t u f f
ob l k . x = x ;
ob l k . y = y ;
__bu i l t i n_oacc_s ing l e_copy_end (&ob l k) ;

}
__bu i l t i n_oacc_worke r_ba r r i e r () ;
i f (i b l k) {

x = i b l k −>x ;
y = i b l k −>y ;

}

Broadcasting (1)

We want to propagate thread-local state:
Register contents

The stack
But not:

Global memory, including mapped buffers

Broadcasting (2)

To simulate “fork” via broadcasting, gimple entities we need to
process are:

SSA names (≈ machine registers)

Local scalar variables (≈ stack slots)

Local aggregates (≈ stack slots also)

Pointer indirection
Unlike NVPTX (or a real “fork”), we do not know the “real”
machine registers, nor the final contents/layout of the stack.

SSA Broadcast (1)

Maintaining SSA form

x_5 = <something >;

to...

if (worker == 0)
x_5 = <something >;

else
x_6 = 0;

x_7 = PHI (x_5 , x_6);

SSA names may have
definitions in a
worker-single block

After neutering, definitions
may no longer dominate
uses

We must invent a definition
for the idle edge too

Insert a Φ-node at the
convergence point

SSA Broadcast (2)

An SSA name (defined in worker-single mode) can be used...
— ...in the current block only

— ...in other worker-single blocks only, or

— in worker-partitioned mode

For the last case, we must broadcast by:
— Copying to LDS after active block

— Copying from LDS in other block

We don’t need to broadcast via LDS if all uses are in
worker-single mode

We don’t need a Φ-node if all uses are within the current
block

Local Variable Broadcast

Addressable local scalar (non-aggregate) variables are not
rewritten to SSA form
Broadcast any variables that are written in the current
worker-single block and are read in worker-partitioned
mode
— Probably pessimistic, but safe and flow-insensitive

Local Aggregates

Local aggregates (arrays, structures) are not broadcast

Instead, gimple stmts modifying elements/fields of local
aggregates are forced into fully-partitioned mode

The operation is done redundantly by all workers

The RHS of the gimple assignment will be a scalar, thus
subject to broadcasting

Writes Through Pointers

Writes through pointers may affect any local variable (that
has its address taken)
Use GCC’s points-to analysis to determine the set of
potentially-affected variables
— Lets us ask, for a given pointer indirection and variable, “might

this pointer point to this variable?”

— At -O0, falls back to “yes” – any local variable may be
modified

Broadcast any such variable which is used in
worker-partitioned mode

Done on a per-block basis, for any block with a write
through a pointer

Worker Reductions

OpenACC reductions use a set of gimple builtin functions
interleaved with fork, join, etc. markers

Generally works well with the GCN workers implementation
Some trouble with reductions to reference variables in
Fortran (e.g. function arguments):
— Address taken in worker-single mode

— Address broadcast, then dereferenced in worker-partitioned
mode

— All wavefronts access worker zero’s stack – oops!

Solved by rewriting reference reductions to use local
non-reference copies of variables (a patch by Cesar, slightly
modified)

Future Work

Neutering for single-entry, single-exit (SESE) regions
instead of a single basic block at a time
— The code is mostly there already (from NVPTX), but not

wired up yet

Removal of duplicate barriers

Increase number of concurrent workers (tune SGPR/VGPR
usage, LDS usage)
Try sharing the new gimple workers code with NVPTX too
— Potential speed or maintenance benefits

— Vector single/vector partitioned mode handling would need
more work

Thank You!

