OpenACC Workers for AMD GCN

Julian Brown

March 2018

S mEs

mentor.com/embedded

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Qtis a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Outline

AMD GCN recap
OpenACC recap

m Worker implementation:

— Pass overview
— Neutering
— Broadcasting

m Worker reductions

Future plans

. mentor
m www.mentor.com/embedded erngedc!ecl

Workgroups & Wavefronts

m A workgroup is equivalent to a CPU
— Small amount of local memory (LDS)

m A wavefront is like a CPU thread:
— Distinct register set

— Distinct stack

— Asynchronous execution wrt. other wavefronts

m Wavefronts can synchronise at barriers, workgroups cannot
(easily)

r
M www.mentor.com/embedded gr?jgg]jggd

OpenACC Execution Model

m Blocks of C/C++/Fortran code are offloaded to a GPU

m Loops within those blocks can be distributed over “abstract”
parallelism levels:

— The coarsest-grain level is gangs
— Each gang is split into workers

— Each worker is split into vectors

m At each point in an offloaded block, work may be distributed
over gangs, workers and/or vectors

m If we are in worker single or vector single mode, it is
important that side effects happen only once

m www.mentor.com/embedded gpnggjggg

OpenACC on GCN

m For OpenACC, the following hardware features are used for
parallelism:

— "“Gangs” correspond to workgroups
— "“Workers" correpond to wavefronts

— “Vectors" use SIMD instructions

— A vector lane is a work item

m Prior to this work, we were restricted to one wavefront per
workgroup (a single worker)

m Parts of code derived from NVPTX implementation (but
moved to the middle-end)

m This work concerns OpenACC only: OpenMP uses a
different, more “CPU-like" scheme

m www.mentor.com/embedded gpnggjggg

Kernel Launch

m All workgroups/wavefronts (“threads”) execute the same
code, and run until completion

m HSA provides a "3-dimensional” model
— Xy %z work items (threads) are scheduled to run on the GPU

— HSA is a cross-platform API. For GCN:

— One of these dimensions maps to SIMD vectors
— One dimension maps to workgroups
— One dimension maps to wavefronts (i.e. workers)

m No provision for dynamically changing the number of threads
— In particular, all workers run all kernel code

— But, there are several ways of working around this

m www.mentor.com/embedded gpnggjggg

Middle-End Representation

m At the gimple level, “fork” and
“join” primitives are used to
jfork demark partitioned loops

m For Nvidia PTX, these are
rewritten in the backend to use a
neutering/broadcast scheme

— “Simulating” fork/join
semantics

join g For AMD GCN, we do a similar
transformation much earlier in
compilation

Gmm www.mentor.com/embedded en‘wbedded

Worker Transformations

Transformations done at gimple level consist of:

m Neutering
— A control flow transformation

— Ensures that worker-single code executes on the
first wavefront only

m Broadcasting
— A data flow transformation

— Ensures that local state changes on first
wavefront are propagated to other (idle)
wavefronts

— Works on predicates used for control flow
— Idle wavefronts “follow along™ with the first

m www.mentor.com/embedded gpngg]jt]gg’

Pass Overview

1. Split basic blocks at fork/join boundaries
2. Par discovery: scan the function's loop structure

3. Populate single-mode bitmaps: record which basic blocks
execute in worker-single or vector-single mode

4. Find SSA names which may need propagation (defined in
worker-single mode)

5. Find uses of VAR_DECLs in worker-partitioned mode

6. Calculate set of local vars that may need propagating after
each worker-single block:

6.1 Those that are assigned directly
6.2 Those that may be modified by a write through a pointer

7. Transform worker-single mode blocks using above data

m www.mentor.com/embedded Qngé?jggcrj

Block Splitting

m Split blocks that contain forks or joins
— Parallelism level changes on edges, not within blocks

m Some stmts are put in singleton blocks in fully-partitioned
mode:
— Control flow (GIMPLE_RETURN, GIMPLE_COND,
GIMPLE_SWITCH, GIMPLE_CALL)

— Assignments with COMPONENT_REF, BIT_FIELD_REF,
ARRAY_REF lhs

M www.mentor.com/embedded g%gg]jggg

Transforming Conditions

Condition splitting

/7 [...]
if (a > b) goto blkl; else goto blk2;

to...

// Worker zero ezecutes this statement:
pred = (a > b);

// Block split, nexzt stmt executed by

// all workers:

if (pred != 0) goto blkl; else goto blk2;

. mentor
m www.mentor.com/embedded embeddad

Transforming Function Calls

m Two types of function calls to consider in worker-single mode:
— “Normal” calls — to maths library routines, etc.

— OpenACC routines

m [he former can be left as-is, and be called from worker zero
only

m The latter may contain worker-partitioned loops, so call from
all workers (including “idle” ones)

— Worker-single code within the function undergoes the same
transformation

r
M www.mentor.com/embedded gr?jgg]jggd

Neutering (1)

if (worker 0O

‘ receive

m A single bb is transformed into a
graph of blocks:

Predicate block inserted at top

Original block executed for a
single worker only

Thread-local state is broadcast
via LDS

Other workers receive local state
changes after sync barrier

www.mentor.com/embedded gpnggjggg

Neutering (2)

In pseudocode:

static __Ilds oacc_ws_data_s_1 oblk;
if ((iblk = __builtin_oacc_single_copy_start(&oblk))
— NULL) {
// Do stuff
oblk.x = x;
oblk.y = vy;
__builtin_oacc_single_copy_end (&oblk);
}
__builtin_oacc_worker_barrier ();
if (iblk) {
x = iblk —>x;
y = iblk—y;
}

. mentor
m www.mentor.com/embedded erngecjc!ecl

Broadcasting (1)

We want to propagate thread-local state:
m Register contents

m The stack

But not:
m Global memory, including mapped buffers

www.mentor.com/embedded

Broadcasting (2)

To simulate “fork” via broadcasting, gimple entities we need to
process are:

m SSA names (= machine registers)
m Local scalar variables (= stack slots)
m Local aggregates (~ stack slots also)

m Pointer indirection

Unlike NVPTX (or a real “fork™), we do not know the “real”
machine registers, nor the final contents/layout of the stack.

r
M www.mentor.com/embedded gr?jgg]jggd

SSA Broadcast (1)

Maintaining SSA form
x_5 = <something>;
to...
if (worker == 0)

x_b5 <something>;
else

x_ 6 = 0;
x 7 = PHI (x_5, x_6);

SSA names may have
definitions in a
worker-single block

After neutering, definitions
may no longer dominate
uses

We must invent a definition
for the idle edge too

Insert a ®-node at the
convergence point

www.mentor.com/embedded gpnggjggg

SSA Broadcast (2)

m An SSA name (defined in worker-single mode) can be used...
— ...in the current block only

— ...in other worker-single blocks only, or
— in worker-partitioned mode

m For the last case, we must broadcast by:
— Copying to LDS after active block

— Copying from LDS in other block

m We don't need to broadcast via LDS if all uses are in
worker-single mode

m We don’t need a ®-node if all uses are within the current
block

: ment
m www.mentor.com/embedded embeddgcrl

Local Variable Broadcast

m Addressable local scalar (non-aggregate) variables are not
rewritten to SSA form

m Broadcast any variables that are written in the current
worker-single block and are read in worker-partitioned
mode

— Probably pessimistic, but safe and flow-insensitive

M www.mentor.com/embedded g%gg]jggg

Local Aggregates

Local aggregates (arrays, structures) are not broadcast

Instead, gimple stmts modifying elements/fields of local
aggregates are forced into fully-partitioned mode

The operation is done redundantly by all workers

m The RHS of the gimple assignment will be a scalar, thus
subject to broadcasting

m www.mentor.com/embedded gpnggjggg

Writes Through Pointers

m Writes through pointers may affect any local variable (that
has its address taken)
m Use GCC’s points-to analysis to determine the set of
potentially-affected variables
— Lets us ask, for a given pointer indirection and variable, “might
this pointer point to this variable?”

— At -00, falls back to “yes” — any local variable may be
modified

m Broadcast any such variable which is used in
worker-partitioned mode

m Done on a per-block basis, for any block with a write
through a pointer

m www.mentor.com/embedded gpnggjggg

Worker Reductions

m OpenACC reductions use a set of gimple builtin functions
interleaved with fork, join, etc. markers

m Generally works well with the GCN workers implementation

m Some trouble with reductions to reference variables in
Fortran (e.g. function arguments):

— Address taken in worker-single mode

— Address broadcast, then dereferenced in worker-partitioned
mode

— All wavefronts access worker zero’s stack — oops!

m Solved by rewriting reference reductions to use local
non-reference copies of variables (a patch by Cesar, slightly
modified)

m www.mentor.com/embedded gpnggjggg

Future Work

m Neutering for single-entry, single-exit (SESE) regions
instead of a single basic block at a time

— The code is mostly there already (from NVPTX), but not
wired up yet

m Removal of duplicate barriers

m Increase number of concurrent workers (tune SGPR/VGPR
usage, LDS usage)

m Try sharing the new gimple workers code with NVPTX too
— Potential speed or maintenance benefits

— Vector single/vector partitioned mode handling would need
more work

m www.mentor.com/embedded gpnggjggg

Thank You!

www.mentor.com/embedded

